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Taking the approximate relation 2r/(es—€a)max~0.1 
(see Fig. 4). 

p _ g—O.leTiTT— e~0.8bTT^ 

The mean life for decay is given by the relation 
0 . 8 5 r r = l or r r = 1 . 2 , which again agrees with the 
uncertainty principle AEAT—1. 

I. INTRODUCTION 

TH E theory of multiple scattering of a charged 
particle passing through matter has been worked 

out by Williams,1 Goudsmit and Saunderson,2 Moliere,3 

Snyder and Scott,4 and Lewis.5 The formulation of the 
theory as done by Moliere,3 and Goudsmit and Saunder­
son2 has the very interesting feature that the differential 
law of scattering enters into the theory of multiple 
scattering only through a single parameter, the screen­
ing parameter Xa. Bethe6 has established that the theory 
of Goudsmit and Saunderson2 has a close quantitative 
relation to that of Moliere.3 The theory of Moliere has 
been widely applied in the interpretation of experi­
mental results. However, Nigam, Sundaresan, and Wu7 

have pointed out that the formula given by Moliere 
for the scattering cross section of a charged particle by 
an atom in his theory of multiple scattering is incon­
sistent. This is because Moliere's calculation of the 
scattering amplitude includes an inconsistent expansion 
of the phase shift in powers of «i=zZ$/fiv. Nigam et al.,7 

use Dalitz's8 relativistic expression for the single scat­
tering cross section derived in the second Born approxi­
mation for the scattering of a spin-half-charged particle 
by the screened Coulomb field of an atom, and the dis-
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Atomic Energy^Commission. 
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Thus, two apparently quite different approaches 
agree. This tends to reinforce the conclusion that adia-
batic potential curves are not important in the theory 
of fast atomic collisions. I t would be interesting to find 
out if a more refined collision theory would bear out 
these arguments. 

tribution function for multiple scattering was calcu­
lated in powers of a\ in a consistent manner. They ob­
tained satisfactory agreement with the experimental 
results of Hanson, Lanzl, Lyman, and Scott9 for the 
1/e widths of the distribution function for the scattering 
of 15.6 MeV electrons by Au and Be. Further the work 
of Nigam, Sundaresan and Wu,7 (hereafter to be re­
ferred as paper A), in contrast to Moliere's3 theory, 
predicts different screening angles for electron and posi­
tron scattering and consequently, different distribution 
functions for multiple scattering. Nigam and Mathur10 

have applied the results of paper A and calculated the 
difference in multiple scattering of electron and positron 
and found good agreement with the experiment of 
Henderson and Scott.11 

The method of estimating the energy of fast ionizing 
particles in photographic emulsion by measuring the 
deviations in their tracks produced by multiple scatter­
ing was first suggested by Bose and Choudhuri.12 

Gottstein, Menon, Mulvey, O'Ceallaigh, and Rochat13 

have shown that the mean deviation of a charged par­
ticle passing through a given layer of matter is directly 
proportional to the charge and inversely proportional 
to the product (momentum X velocity) the constant 
of proportionality depending on the composition of the 
scattering medium. They calculated the Scattering 
constant" using Moliere's theory. In this paper, the 
mean angle of multiple scattering, spatial and pro-
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Phys. Rev. 84, 634 (1951). 
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and O. Rochat, Phil. Mag. 42, 708 (1951). 
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The expressions for the mean spatial and projected angles of multiple scattering are obtained using the 
distribution function for multiple scattering derived by Nigam, Sundaresan and Wu, and compared with 
those of Moliere. It is shown that Moliere's calculations involve the approximation of Xc\/B —» 0. The dis­
tribution function of Nigam et al. is found to give correction terms which are proportional to powers of 
XeWB and XC^B \n{Tr/Xc^B). 
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jected, is calculated (Sees. IV and V) using the dis­
tribution function derived in paper A.7 

II. SUMMARY AND RESULTS OF PAPER A 

Moliere's theory3 of multiple scattering is char­
acterized by the definition of a parameter B which 
depends on the screening angle Xa. The screening angle 
Xa (for multiple scattering) is defined such that it 
represents all the small angle contributions arising in 
the angular distribution function for multiple scatter­
ing; the cross section for single scattering being used 
explicitly in the distribution function. For the scatter­
ing of a charged particle by the screened Coulomb 
field of an atom, the screening angle is given by 

l n ( 2 / X 0 ) - i = / " [ g ( y ) / y ] ^ , 3>=sin(X/2), (1) 
Jo 

q(y) = o-(y)/<rB(y), (2) 

where x is the angle of scattering and q(y) is the ratio 
of the scattering cross section (with screening) to the 
Rutherford cross section (no screening) for single 
scattering. The above definition of the screening angle 
Xa is such that in the first Born approximation, when 
q(y) -^ <lB(y) = <rB(y)/<TR(y), for the scattering of an 
electron of momentum p by an exponentially screened 
potential V(r) = — (Ze2/r)e~Xr, we have 

Xa—>X0=*X/#- (3) 

The screened Coulomb potential used by Moliere3 was 
V(r)= — (Ze2/r)o)(r\0), where the Thomas-Fermi func­
tion o)(r\o) consisted of a sum of three exponentials and 
Xo=Z1/3/0.855ao, an being the Bohr radius. In the first 
Born approximation, this Thomas-Fermi field gives, 
upon numerical integration, 

Xa-*X0~1.13(£Xo/£). (4) 

With this choice of the potential, Moliere3 calculated 
the formula for single scattering which then formed the 
basis of his theory of multiple scattering. I t has been, 
however, pointed out by Nigam, Sundaresan, and Wu7 

(Sec. V, reference 7) that MoliereV single scattering 
formula is based on an inconsistent expansion of the 
phase shift in powers of ai=zZe2/fiv. 

In the paper of Nigam et al.,7 the angular distribution 
function for multiple scattering is derived by using for 
single scattering Dalitz's8 relativistic formula, derived 
in the second Born approximation, for the scattering 
of a spin-half-particle of charge z (z= — 1 for an elec­
tron) by an exponentially screened Coulomb potential: 

V(r)=(zZe2/r)e- Xr (5) 

where the screening parameter X=/*Xo, M being an ad­
justable parameter of the order of unity. The parameter 
ix is introduced in order to compensate for the use of a 

single exponential as the screening factor of the Cou­
lomb field of an atom instead of a sum of three ex­
ponentials as done by Moliere.3 The multiple-scattering 
distribution function was derived by following the 
simplified procedure of Be the.6 According to Goudsmit 
and Saunderson,2 the angular distribution is given by 

Mt)=Z(i+h)Pi(cosd) 
1=0 

Xexp K dx sinXo-z)(x)[l - Pj(cosX)] , ( 6 ) 

where f(6,t) sinddO is the actual number of scattered 
particles between 6 and 8+d6, t the foil thickness, and 
N is the number of scattering atoms/cm3. The expres­
sion for the screening angle Xa is obtained by calculating 
the integral in the exponential of Eq. (6) and combining 
all the contribution from the small angles into a single 
term. This results in 

f p - P 0.2310 
,=X0 l+2aX 0 lnXoH +1.448/3 

[ L B 8 
, (7) 

where 
ft/ Z1 '3 
ft/ Z1'6 \ 

X O = A H , a=-zZ/137, p = v/c. 
p\O.SS5a0/ 

(8) 

The expression of the screening angle as obtained by 
Moliere is 

Xa=X0{1.13+3.76a2/^2}1/2. (9) 

The coefficient 1.13 arises from the use of the sum of 
three exponentials to represent the Thomas-Fermi po­
tential. However, a comparison of Eqs. (7) and (9) 
shows that Moliere's3 correction term 3.76a2/02 is large 
for high Z. Thus, the effect of the deviation from the 
first Born approximation on the screening angle, as 
estimated by Nigam et al.,7 is much smaller than as 
given by Moliere. This is as it should be since the 
deviation from the first Born approximation is very 
small at small angles which go into the definition of the 
screening angle. I t should also be noted that Eq. (7) 
predicts different screening angle, and hence, different 
multiple scattering10,11 for electrons (z—— 1) and posi­
tron (z= + l) scattering, in contrast to Moliere's3 

theory in which only even powers of a appear. The 
parameters in terms of which multiple scattering is 
described are Xa\ £, b and B denned as follows: 

ln(2/Xa) = l n ( 2 / X a O - i + C ~ ( 2 a X 0 / ^ ) ( l - i e 2 ) ( l ~ C ) , 

^ l + ( 2 a X 0 / £ ) ( l - - / 3 2 ) , 

^ ^ l n ( X c
2 / 4 ) - l n ( X / 2 / 4 ) , 

6 = £ - £ l n £ , 

(10) 

where C=0.577 215 is the Euler's constant. Finally, the 
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TABLE I. Numerical values of the distribution functions 

#=0/xcVB 

0 
0.2 
0.4 
0.6 
0.8 

1.0 
1.2 
1.4 
1.6 
1.8 

2.0 
2.2 
2.4 
2.6 
2.8 

3.0 
3.2 
3.4 
3.6 
3.8 

4.0 
4.2 
4.5 
4.6 
5.0 

/<»(*) 

0.8456 
0.7038 
0.3437 

-0.0777 
-0.3981 

-0.5285 
-0.4770 
-0.3180 
-0.1396 
-0.0006 

+0.0782 
0.1054 
0.1008 
0.08262 
0.06247 

0.04550 
0.03288 
0.02402 
0.01791 
0.01366 

1.0638X10-2 

0.6140X10-2 

0.3831X10-2 

ifmW 

2.4929 
2.0694 
1.0488 

-0.0044 
-0.6068 

-0.6359 
-0.3086 

0.0525 
0.2423 
0.2386 

0.1316 
0.0196 

-0.0467 
-0.0649 
-0.0546 

-0.03568 
-0.01923 
-0.00847 
-0.00264 

0.00005 

0.10741X10-2 

0.12294X10-2 

0.08326X10-2 

fW($)/(-™px*VB) f<»'W/(-2™pxc(B)iQ 

3.5449 
3.3374 
2.7741 
2.0067 
1.2176 

0.5545 
0.09288 

-0.1654 
-0.2659 
-0.2696 

-0.2285 
-0.1766 
-0.1305 
-0.09521 
-0.07024 

-0.05302 

-0.03263 

-0.02196 

-0.01556 

-0.01159 
-0.00884 

3.7389 
3.1776 
1.7700 
0.1707 

-0.9791 

-1.3786 
-1.1335 
-0.5830 
-0.05923 
+0.2601 

0.3611 
0.3198 
0.2243 
0.1325 
0.06713 

0.02865 

0.000807 

-0.003219 

-0.002795 

-0.002025 
-0.001493 

a There are some errors in the values of /(1)'(#) as reported in references 7 and 10. The author is thankful to Gerald Dick of Argonne National Labora­
tory for help in the computation of the numerical values of fW and fW. 

distribution function can be approximated by 

f(e,t)c~K(xe*B)-

where 

f 1 

2 LB2 
- [ /« ) ' (#)+/C2> ( # ) ] + . (11) 

JO 

duui+Mtf^^toM&u) exp(-«2/4) 

and 

K=exp 
lBX<?\ 

1 16 

1 =/«»(#) 

-irapXc(B)*u =fay(&) 

K^2/4)ln(^2/4) =/ (1)(#) 

- 2wal3Xc(B) l%u (u2/4:) In (u2/4) = f»' (#) 

K(«2/4)ln(«2/4)]2 =/<*>(#) 

8irat3 2£ ln2 8(02+7ra0) 

(12) 

B B B 
-[C-ln(xV^)] 

(13) 

X? = ^NteWZ(Z+l)/(pcPY, §=d/(Xc^/B). 

The exponent of u in the integrand can be taken as unity. £ is also very close to unity (within a percent or two) 
and its actual value may be of importance when comparing particles of equal mass and energy but of opposite 
charges. The integrals in Eq. (12), except for / ( 0 ) , / ( 1 ) and / ( 1 ) ' , cannot be carried out analytically. However, for 
large values of #, one can obtain asymptotic expansions which are in general more useful. In Table I, we have listed 
the numerical values of /(1>(#) and / ( 2 ) (#) , as given by Bethe,6 and of /<*>''(&)/(-TrapXc\/B) and / ( 2 ) ' ( # ) / 
(—2wapXc(B)*g) as calculated by numerical integration at the Argonne computer IBM 704. 

III. ASYMPTOTIC EXPRESSIONS 

The asymptotic expressions for / ( 1 ) , / ( 1 ) / , etc., can be obtained by using the integration formulas given in the 
Appendix of Moliere's paper.3 The following are the results: 
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= 2e-*2, 

2 8 

(exact) 

36 192 

#4 06 #8 #10 

/»> ( ?>)~32 !?-«[ln(7 ??)- | ]+288^-8[ ln(7 ??)- (11/6) ]+ • 

= 4 £ ( - l ) « -
«=o M!(—W—•§)! 

7,(tf)=/O)'0>)/(-2TO(8X(!(5)*f) 

^-2C"-H)~_#-3_2.25#-6-7.03125 ?r7-28.711#- !>-145.350-"-

(14a) 

(14b) 

(14c) 

(14d) 

= 4E 
•§)! 

#-*<«+«[-2 I n 0 + * ( » + § ) + ¥ ( - » - $ ) ] 

where14 

n=°0 fll{—1 

-4.5<r6(-ln#+0.703157)+28.125#-7(-ln<?+1.103157) 

+ 172.266#-9(-ln#+L388871)+1162.79#-1 1(-ln<?+l.16111)+- (14e) 

(n+h)l=y/r 
( 2 « + l ) ! l 

2n+l 
( - n - * ) l = v V 

( - 2 ) " 

( 2 » - l ) ! ! ' 
( - * ) != - /» , 

( 2 n + l ) 1 1 = 1 X 3 X 5 - • • X ( 2 » + l ) , 

¥ ( * ) = — In (*!)=— l n r ( l + * ) , (15) 

¥(») = -
n 1 

-c+E -, ¥ ( - i ± » ) = - - ln (4 7 )+2 2:1 

^=o2x+l 
¥ ( - § ) = - l n ( ± y ) , 

C=0.577215 = ln7 . 

IV. MEAN SPATIAL ANGLE OF SCATTERING 

In order to determine the momentum of a charged 
particle, as was first suggested by Bose and Choudhuri12 

and later followed up by Gottstein, Menon, Mulvey, 
0 ,Ceallaigh,andRochat,13and Fichtel and Friedlander,15 

the important variable to measure along the track of 
the fast charged particle in nuclear emulsion and cloud-
chamber is the mean angle of scattering produced by 
multiple scattering in traveling through a certain thick­
ness t (cell size). Since f(6,t) sinddd is the number of 
particles scattered in the angular interval dd, the mean 
angle of scattering is given by 

with 
1 

f@,t) = K\fW ( * ) + - [ / < i ) ' m+fv (*)] 
B 

1 

2 IB2 
-[/(2)'W+/(2) (#)]+• (19) 

0= / V ( ^ 0 sinBdO, 
Jo 

so that 

#=0 / (X c A / £ ) = 

where 

(16) 

• / . 

V/XCVB s i n ^ x V ^ ) 
&-

XC^B 
-mw, (17) 

f($,t) smddd=f(&,£) 
sm(#cX^B) 

X^/B 
-d&, 

14 E. Jahnke and F. Emde, Tables of Functions (Dover Publica­
tions, Inc., New York, 1945). 

15 C. Fichtel and M. W. Friedlander, Nuovo Cimento 10, 1032 
(1958). 

The results for the mean angle of scattering given by 
Gottstein et al.n is from Moliere.3 In Moliere's calcula­
tions, as also in the derivation of Moliere's results by 
Bethe,6 the sine of the angle is replaced by the angle 
itself and the upper limit ir of the angular integration 
is replaced by infinity. I t is quite easy to see that if 
this procedure of approximation is now followed, it 
would lead to a logarithmically divergent term in the 
contribution to # arising from / ( 1 ) / . If we try to in­
terpret Moliere's approximation, then it is clear from 
Eqs. (16) and (17) that Moliere3 has calculated # in the 
limit of Xc\/B—*0. Since Xc\/B is generally a small 
number this approximation in Moliere's3 calculations is 

(18) quite good. However, since both f(iy and / ( 2 ) / are pro­
portional to Xc\/B and the integrations involved in the 
calculation of the mean angle give additional factors of 
the type \n.(ir/Xcy/B), the substitution of Xc\/B—•» 0 
from the very beginning is not desirable if we want to 
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estimate the effect of / ( 1 ) ' and / ( 2 ) / terms to the magni­
tude of #. 

In order to carry out the integration in Eq. (17), the 
interval of integration was broken into two intervals 0 
to #o and #o to ir/Xc\/B such that in the range 0 to $o, 
sm($Xc\/B)—>dXc\/B and numerical values of / (# ,0 
were used. In the range #o to w/Xc<\/B, the asymptotic 
expressions, Eqs. (14a)-(14e), were used. All integrals 
are then expressible in terms of 

where 

Jo 

-f 
Jo 

ir/Xc^B s in^XcV^) 

d : •—-/<»> (p,t)d& 

*0=5 rir/XcVB S[n(#Xc^B) 

XC^B 

&fM(&,t)d&+ 
fTTf 

J do 

L 
smx 

dx and 
§QXC^B X f 

J &o? 

cos# 
dx , 

&0Xc^B X 

XC^B 

X/»(#,0<«, (21) 

which were calculated analytically to less than 0 . 1 % 
accuracy. In view of the small value of Xc\/B and the 
accuracy of the asymptotic expressions, Eqs. (14), the 
choice of #o=5 was considered appropriate. In the fol­
lowing we give the first few significant terms of the 
results of integration. 

r sin(#xV-E) 1 
-2e~» 

/.00 /.00 p 

Jo J TT/XCVSL XeVB 

\/li 

•e-^Bl\ (20a) 

#i=0.8699-1.5339 X c \ /^+2.3820(X c v / ^) 2 , 
#2=-0.2088+4.2412X c

2£, 

di^—iraPxA/B, 

+X*B 

0.9738- In (TT/X^B) 

h 7968+0.375 ln-
XC^BJ 

(20b) 

(20c) 

(20d) 

n taking the values 0, 1, 1', 2,2 ' , etc. In #0 the 
contribution 

/-00 sin(#Xc<\/£) 
/ 0 [_2e~»2d#] 

J TT/XCVB XC\/B 

is neglected since ir/Xc\/B> 30-50, so that the factor 
e~^2 in the integrand would lead to a vanishingly small 
value for the integral. Substituting Eqs. (20) and Eq. 
(17) we obtain the following expression for the mean 
angle of scattering 

tf=^tM—(*i'+#i)+ G»2'+t»2)+- • • ] (22) 
L B 2 IB2 J 

where # n are given by Eqs. (20) and K and Xc are de­
fined by Eq. (13). In the limit of Xe\/B-+0, Eq. (22) 
goes over to the result due to Moliere,3 and Gottstein 
et al.,ld v i z . , 

\/irr 0.982 0.117 
K x c v ^ o = 1 + 

2 L B B2 
(23) 

&2,= -2Tro&£Xey/B 

Xr0 .2922+X c
2 J3Jnn—— J (2.25-0.1172Xc

2£) 

+ ( l n — — ](-7.7070+0.3772xc
2£) 

\ Xcx/Bl 

+ (6.934+0.3036Xc
2£) (20e) 

V. MEAN PROJECTED ANGLE OF SCATTERING 

In cloud chamber experiments and emulsion work 
one does not measure the spatial angle of scattering 8. 
Instead one determines its projection on a plane of 
observation which contains the direction of incidence. 
Moliere3 denotes this angle by cj>. Then following 
Moliere, the angular distribution function in terms of 
<p=(t>/Xc\/B is given by 

where 

f(<p)d<p=K\f<»(<p)+-Uay(<p)+fm(<p)l+ C / ( 2 ) ' ( ^ ) + / ( 2 ) ( ^ ) ] + - • • \d<p, 
[ B 2 LB2 

/2\ C° (-f y\n 2 
/ < » > ( „ ) ~ M / dycos(yv)g-^i*l-\n.-\ ; /»>(*») = - T n « ^ , 

(24) 

\/TT 

fa)f(cp)~(^-\-7rat3Xc<s/B) f dyy cos (y^)^ 2 / 4 , (25) 

py^y J-)(-2Tral3Xc^B) / dyy cos(y<p)e-v*l4( — In— Y 
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The asymptotic expressions for fa)(<p) and f(2)(<p) are given by Moliere3 who has also tabulated their numerical 
values from <p=0 to 4. For completeness sake we reproduce these values in Table I I . For large <p(<p>4), 

fV(<p)~<p-*+3<p-s+ll.25<p-7+52.5<p-»+- • • (26a) 

/ ( 2 ) ( ^ ) - 6 ^ [ l n ( 2 7 ^ ) - ( 2 5 / 1 2 ) ] + - 4 5 ^ - 7 [ l n ( 2 7 ^ ) - ( 4 9 / 2 0 ) ] + - • -. (26b) 

The corresponding expressions for fay(<p) and/ ( 2 ) / (<p) can be obtained from Eqs. (A4) and (A6) and are as follows: 

/ ( 1 >X^)^2a^xV^C^~ 2 +1.5^- 4 +3.75^- 6 +13J25^- 8 +-59 .063^- 1 0 +- • • ] (26c) 

f^y (<p)~4apXcX/B\3<p-( --ln(2y cp)+-- | + 1 5 ^ r l n ( 2 7 ^ ) + _ _ ] + . . 
60 J 

(26d) 

The integral occurring in fay(<p) can be transformed16 

to (see Appendix) 

Jo 
dyye~yVA cos (3/ <p) = 2 — 4 <pe -^ f dtel\ 

Jo 

The numerical values of fay (?)/(—2afiXc\/B) are 
given in Table I I . 

We can now calculate the mean projected angles of 
scattering. I t is defined by the integral 

Jo 

=T/XC^B 

d<p<pf(<p) 

1 1 

B 2 IB2 

(28) 

, (28) 

TABLE II. Numerical values of the distribution function. 

<P=<f>/xc\/B 

0 
0.2 
0.4 
0.6 
0.8 

1.0 
1.2 
1.4 
1.6 
1.8 

2.0 
2.2 
2.4 
2.6 
2.8 

3.0 
3.2 
3.4 
3.5 
3.6 

3.8 
4.0 

/(1)M 
+0.0206 
-0.0246 
-0.1336 
-0.2440 
-0.2953 

-0.2630 
-0.1622 
-0.0423 
+0.0609 

0.1274 

0.147 
0.142 
0.1225 
0.100 
0.078 

0.059 
0.045 

0.0316 

0.0194 

VWM 
+0.416 

0.299 
0.019 

-0.229 
-0.292 

-0.174 
+0.010 

0.138 
0.146 
0.094 

0.045 
-0.049 
-0.071 
-0.064 
-0.043 

-0.024 
-0.010 

+0.001 

0.006 

(~2a(3XcVB) 

2.0 
1.84420 
1.42409 
0.86057 
0.29728 

-0.15232 
-0.43492 
-0.55643 
-0.55961 
-0.49677 

-0.41072 
-0.32770 
-0.25901 
-0.20652 
-0.16776 

-0.13926 
-0.11791 
-0.10153 

-0.088605 

-0.078159 
-0.069568 

16 Tables of Integral Transforms, Bateman Manuscript Project 
(McGraw-Hill Book Company, Inc., New York, 1954), Vol. I, 
p. 158. 

where again we have avoided taking the upper limit to 
be infinite as done by Moliere3 and 

1 
(27) £ 0 = - — ( l -e~ 5 2 ) , 8 = TT/(XCVB), 

\ZTT 

£ 1 ~ o . 5 5 3 8 - r l - 5 - 3 , 

(29a) 

^ - 0 . 1 3 2 0 - i r 3 [ m ( 2 7 S ) + i ] , 

(29b) 

(29c) 

^ i ^ ( - 2 a / 3 X c V / ^ ) [ 0 . 0 1 8 0 4 - l n 5 + 0 . 7 5 r 2 ] , (29d) 

^2^(-4a/3X c A /^)C0.2886+-r2(1.5m5-0.0945)] . (29e) 

In the calculation of £0 and £2', it was found convenient 
to carry out first the <p integration and then, using Eqs. 
(A4), (AS), (A6), and (A8), carry out the y integration. 
£1, <f>2 and yy were obtained by integrating numerically 
over <p from <p=0 to 4, using the numerical values of 
/ ( 1 ) (<p)> / ( 2 ) M and fay(<p) given in Table I I , and from 
¥=4 to (p=dy the integration over <p was carried out 
analytically. In the limit of Xc\/B —> 0, we obtain from 
Eqs. (28) and (29), the following result 

= ( 1 A A ) [ 1 + ( 0 . 9 8 2 / 5 ) - (0.117/£2)+ • - • ] (30) 

which is in agreement with Moliere3 and Gottstein 
et al.n 

I t should be noted that the leading terms in Eqs. 
(20d) and (29d) are proportional to \YI(TT/XC\/B). 
Further the ratio of the leading terms in #w and <pn is 
~7r /2 , as is to be expected from Eqs. (23) and (30). 
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APPENDIX 

In the following we list the various integrals used in 
the text (p9^integer). The results (Al) to (A5) are 
from Moliere.3 

r ° 2p\ 
\ ydyJQ(xy)(y2/4:)v=- - ; 

Jo (-#-1)1 

.—2p—2 

for p>-l. (Al) 
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Differentiating this once and twice with respect to p, Differentiating this with respect to p we obtain 
we obtain 

/ 
Jo 

dy cos(xy)(y2/4:)p ln(/ /4) 

f ydyJ0(xy)(f/^nn(f/A) U (^_i), 
J o = yV ar-2p-i 

= ~ —C-21nx+^(,)+^(-,-l)>-2^2, (A2) X[_2ln*+¥fo-i)+¥(--#-l)]. (A6) 
(—p— \)\ 

and [ dyy(y*/4r<r*iA=2{m\). (A7) 
Jo 

ydyJo(xy) (W4)p( In—| Differentiating this with respect to m we obtain 

^ ' 4 ' r ,y2.m 

2p\ / dyy(-) e~y2lA\n(y2/4) = 2(m^(m). (A8) 
= '- {[-21nx+^(£)+^(-£-l)]2 J» \ 4 / 

v * J The integral16 

where / die-qt COs(2aW2) 
^ Jo 

^ (*) = — In (xl). = g-1+i7r
1/2Q;1/2g-3/2e-a:^ erf (ia1'^2), 

for Reg>0 (A9) 
oo /ff wher* 

J , * * — / < c o s ( ^ ) ^ - < r ^ . (A4) « £ ( * ) = — f < « ^ \ (A10) 

f°tfv(W4V cosfsvl-v/ir ( j ? ~ ^ ! x ~ ^ T h e i n t e g r a l ^ ^ ^ h a s b e e n computed by Terrill and 
J^oyW/V C0S^xy)-VT^_p__1y

X > Sweeny17 for ^=0 to ^=4. 
,^s

 17H. M. Terrill and L. Sweeny, Jr., J. Franklin Inst. 237, 495 
for p> - \ . (A5) (1944); 238, 220 (1944). 


